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We calculate the isotope and temperature shifts of the indirect and direct band
gaps in natural silicon (M=28.09 u), in natural diamond 12C and its isotope *C, in
natural germanium (M=72.59 u), and the isotope °Ge, and in the isotope mixture
™-7Ge, due to the deformation potential-type electron-phonon interaction (within
the pseudopotential-bond-charge-model framework). We compare these results to
existing experimental information and to data obtained by us with spectroscopic
ellipsometry. We find that there are small, but noticeable shifts of the band gaps
between different isotopes (about 13 meV for diamond, 1 meV for germanium). The
isotopic influence on the broadenings of the F/; transition in Ge was also observed.
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I. INTRODUCTION

The conventional tetrahedral semiconductors Ge and Si can be grown as extremely per-
fect single crystals whose ultimate perfection is determined by isotopic disorder due to the
natural isotopic abundances (in natural germanium Ge 20.5%, “Ge 27.4%, ™Ge 7.8%,
Ge 36.5%, ®Ge 7.7%; in natural silicon 28Si 92%, 2°Si 5%, *°Si 3%). The natural isotopic
spread is less drastic, but still not negligible for diamond (**C 98.9%, *C 1.1%). Small
single crystals of isotopically enriched materials have been available for some time [1-3], but
are rather difficult to obtain. Recently, crystals of highly enriched *C diamonds, several
mm in size, have been obtained and used in investigations of vibronic and electronic excita-
tions [4,5]. Also, isotopically enriched *C diamond has been shown to exhibit a remarkably
high thermal diffusity [6]. Germanium is the tetrahedral material with the largest natural
isotopic mass spread and thus that in which effects of isotopic mass and isotopic disorder
should be most easily observable. At the Kurchatov Institute in Moscow nearly isotopically
pure (> 95%) germanium powders are being prepared in large amounts by standard isotope
separation techniques. From these materials germanium single crystals of high purity and
perfection are being grown, in part because of their application as neutrino (“°Ge) and y-ray
detectors ("°Ge) [7]. These crystals, and that of Ge which has been available for some time
[2], have been used to obtain interesting data on the dependence of the solid-state proper-
ties of germanium on isotopic mass and disorder. Among them we mention the decrease in
thermal conductivity with increasing isotopic disorder [2], the rather weak but nonnegligible
dependence of the lattice constant on isotopic mass [3], the dependence of phonon frequen-
cies and linewidths on isotopic mass and disorder [8,9] and the dependence of electronic gaps
on isotopic mass [10,11].

In this paper we present calculations of the dependence of several energy gaps and their
Lorentzian widths on isotopic mass for diamond, germanium, and silicon. We show that the
effect is related to the dependence of the electron-phonon self-energy on isotopic mass and
disappears at high temperatures as the average phonon amplitude becomes mass indepen-
dent. As part of these calculations we also obtain the temperature dependence of the indirect
and direct gaps of these materials. The theoretical results are compared with experimental
data, in particular for the isotopic shifts of gaps recently obtained for germanium [10,11]
and diamond [5]. Experimental data obtained ellipsometrically for the F; and E; + Ay
transitions of natural Ge, °Ge and "Ge are also presented. They contain information on
the dependence of the gap frequency and Lorentzian widths on isotopic mass which compare
favorably with the calculated results.

II. GENERAL THEORY OF TEMPERATURE SHIFTS

The deformation-potential electron-phonon interaction renormalizes the creation energies
of electron-hole pairs (band gaps) thus causing shifts of the gaps with temperature. Small
shifts are also introduced by the thermal expansion of the lattice. The theory for the
temperature shifts in diamond-type semiconductors has been described in detail by Allen,
Heine, Cardona, and Lautenschlager [12-15] and reviewed by Cardona and Gopalan [16].
For a review of earlier work, see Ref. [17]. (The advantages and problems of the Allen-Heine
or rigid-pseudoion method [12], which we use here, have recently been discussed by Fischetti



and Higman. [18]) This method decribes the temperature shifts of the band gaps Ecp with
three terms:

(i) By thermal expansion (TE) the lattice constant increases and thus the band gaps
shrink, if they have a positive pressure coefficient dFcp/dp. The shifts for the gaps are

found to be [17]
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where o(T) is the temperature-dependent thermal expansion coefficient and B the bulk
modulus. In some cases (e.g., for the lowest indirect gap in Si), the pressure coeffiecient of
the gap is negative and thus the TE contribution to the temperature shift is positive. This
term can be evaluated very easily using the values listed in Table I and is small compared
to those due to electron-phonon interaction as described below.

(ii) The Debye-Waller term [see Fig. 1(a)] arises from the simultaneous interaction of an

electron (with wave vector k in band n) with two phonons of the same wave vector Q and
mode j (electron—two-phonon interaction). In the rigid-ion approximation we assume that
the potential V,, of an atom of type a moves rigidly with the atom in a phonon vibration.
Then, the Debye-Waller (DW) contribution to the shifts of an electronic state nk for a

frozen-in lattice displacement y of one atom of type o located at the atomic site éfa is

given by [17,15]
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where the sum runs over all intermediate electron states n’, lg’, all lattice vectors [ and the
basis (a) of the lattice. The brackets with superscript ¢ denote the thermal or temporal
average. The energies necessary to distort the lattice (phonon energies) have been assumed
to be much smaller than the usual electronic band gaps and thus are neglected in the
denominator of Eq. (2).

B <n,1§,f,a,n’,l§’> = <n12
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is the matrix element of the gradient of the potential V,, of one atom of type « located at
the atomic site éfa' (The notation used here is somewhat symbolic, but very intuitive to
emphasize the influence of the isotopic mass entering the phonon displacements uy . For
explicit expressions applicable for a lattice with a basis, see Ref. [15].) We use an empirical
pseudopotential band structure and assume that the matrix element of the atomic potential
with the true wave functions is the same as that of the pseudopotential evaluated with the
pseudo-wavefunctions [24] (rigid pseudo-ion method). To second order in phonon displace-
ment, Eq. (2) for the Debye-Waller-term is equivalent to simply multiplying the structure
factors S(é) used in the band structure calculations by Debye-Waller-factors exp(—2W)



with W = (u?)

of band gaps. It has been evaluated for several materials in Ref. [25], but usually overesti-

L2
G‘ /12. This term is the dominant contribution to the temperature shifts

mates the shifts when considered without the other electron-phonon term discussed next.
(iii) The third contribution to the temperature shifts of electronic states is the real part of
the self-energy (SE) term, which arises from the interaction of an electron with one phonon
taken to second order in perturbation theory, see Fig. 1(b). This term is usually somewhat
smaller than the Debye-Waller-term, but opposite in sign, as can be seen in the denominator.
Therefore it should be taken into account in a realistic calculation of temperature shifts,
although it requires a Brillouin-zone integration to be evaluated. It can be expressed as

[17,15]
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The imaginary part of this self energy causes lifetime broadenings of critical points and is
responsible for intervalley scattering processes [26].

For numerical reasons, we Fourier-transform Egs. (2) and (4) to the phonon represen-
tation (thus replacing the sum over lattice sites by an integration over all phonons in the
first Brillouin zone) and label the contribution of a single phonon with wave vector Cj and

branch j (with the occupation number Nj,=1) as <8En,;/aNQj> , where K stands for
K

DW or SE. From these electron-phonon coupling coefficients we define the dimensionless
electron-phonon spectral functions

P F (m? Q> -y (%) 5(9-(@) (5)
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in such a way that the temperature shifts due to the DW or SE terms are given by
[ ; 1
0

For the integration over all phonon wave vectors Cj we use the tetrahedron method with 89
points in the irreducible wedge of the Brillouin zone. [14]

For the numerical evaluation of the terms in Eqgs. (2) and (4) we assume that only the
phonon amplitudes and not their energies depend on the temperature and isotope con-
centration. When calculating the energy denominators we neglect, for example, the small
temperature dependence of the electron energies. (A self-consistent, iterative calculation is
not necessary, since the shifts are much smaller than typical band gaps.) We use a con-
stant imaginary self-energy of about 100 meV for the electrons to avoid numerical problems
during the integration over all phonon wave vectors and to account for the finite lifetimes
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of the electronic states. We obtain the phonon energies and eigenvectors using Weber’s
bond charge model [27,28]. For the electronic structure and the evaluation of the matrix
elements of Eq. (3) a local pseudopotential band structure with the form factors of Cohen
and Bergstresser is used [29]. Similar form factors or lattice dynamical models yield similar
results. The accuracy of the method and the dependence of the matrix elements on different
pseudopotential form factors have been discussed in detail in Refs. [18,30,31].

An alternative formulation [32] calculates the change in the phonon frequencies due to
the interaction with electrons using a first-principle pseudopotential method.

IT1I. TEMPERATURE SHIFTS
A. Diamond

Compared to other semiconductors, very little is known about the band structure of
natural diamond '2C. Experimental investigations are made difficult by the large band gap
(5.6 eV) calling for vacuum-ultraviolet spectroscopies, [33-36] whereas the lack of p-electrons
in the core and the tetrahedral distribution of the valence charge cause problems for pseu-
dopotential band structure calculations [37-40].

In analogy to silicon, one should assume that the lowest conduction band state at I' is
threefold degenerate and has I';5 symmetry, in contrast to germanium (and most zincblende-
type materials) which has a non-degenerate 1", (s*-like) conduction band minimum. This is
confirmed by photoemission measurements [41] as well as quasiparticle energy calculations
[42,43]. Therefore, only the pseudopotential calculations of Refs. [39] and [37] seem to be
realistic, although they result in dielectric functions which are in rather poor agreement
with experiments. [40] Reflectivity measurements at 77 K and at room temperature suggest
[36] that the direct gaps at I' (£}) and along A (F;) are almost degenerate (just like in
silicon), but this is still controversial [44] and has to be confirmed by further experiments
or quasi-particle calculations. The lowest indirect gap occurs between the valence band top
at I',5 and the conduction band minimum along A near (27/a)(0.76,0,0) with an energy of
about 5.6 eV, see Refs. [45,46].

In this investigation of the temperature shifts of critical points in diamond *C, we have
used the pseudopotential form factors of Ref. [39] which yield a band structure that is in
reasonable overall agreement with experiments, when a plane wave basis set with a cutoff of
17.4 Ry is taken for the calculation. The dimensionless electron-phonon spectral functions
for the shifts of the Ef gap are shown in Fig. 2. The Debye-Waller term (dashed lines)
is slightly larger for the valence band than for the conduction band, a fact which causes
a decrease in the gap with increasing temperature. The self energy term (solid lines) has
a large negative optical phonon peak for the conduction band and a positive peak for the
valence band. They also cause a gap shrinkage, as shown in Fig. 3 (dashed double-dotted
line). The curves are qualitatively similar to those for silicon (see Figs. 4 and 5 in Ref.
[14]), but rather featureless in the acoustic phonon energy range below 120 meV. This can
be explained by differences in the one-phonon density of states of the two materials, see Fig.
8 of Ref. [27]. The renormalization of the band gaps at 0 K, obtained from integrating Fq.
(6) with Ng set to 0 for the different electronic states, are given in Table II. Since absolute
shifts of states cannot be calculated with the empirical pseudopotential method, all shifts



are measured with respect to the valence band maximum at I,,. These zero-point shifts
will be discussed in the isotope section of this paper.

The calculated energy of the Ef gap as a function of temperature (assuming E{=7.3 eV
at 0 K), including all three contributions, is shown by the solid line in Fig. 3. The con-
tributions of thermal expansion (dashed-dotted) and self-energy (dashed-double-dotted) are
shown separately. It can be seen that the shifts due to thermal expansion are small, ex-
pecially because of the very small pressure dependence of the E} gap commonly found in
semiconductors. [20,23,19] Furthermore, the TE contributions are rather small for all gaps
in diamond because of the large bulk modulus (442 GPa, see Ref. [21]). The Debye-Waller
contribution is dominant up to about 400 K, but at 700 K the self energy accounts for 40%
of the shifts. The only experimental data for the shifts of the Ej gap in diamond known to
us are the reflection measurements of Clark and co-workers [45] reporting a shift of the direct
gap of 100 meV between 133 K and 295 K. This result is much larger than our calculated
shifts (only 15 meV), but it is not clear whether the assignment of the experimental peak
to K transitions is correct. In silicon, the Ej and F; critical points are almost degenerate
[47]. Since the shifts become sizeable at elevated temperatures, reflectivity measurements
should be performed up to 700 K.

In order to be able to distinguish between the Ej and F; critical points, we have also
calculated the shifts at [ and three points along A between I' and L. The electron-phonon
spectral function for k = L in diamond is shown in Fig. 4. The various peaks in the self-
energy term for the optical phonons correspond to LO(X) (132 meV), TO(X) (147 meV),
LTO(L) (150 meV), and LTO(I') (165 meV). An increase of the mesh used in the integration
over all phonon wave vectors from 89 points to 505 points in the irreducible wedge of the
Brillouin zone does not change the spectral function significantly. The electron-phonon
contributions to the shifts of the direct gaps are almost equal at I' and L, but slightly
smaller (by about 15%) along A. For the calculation of the thermal expansion term we need
the pressure coefficient of the gap at L, but no such calcuation exists to our knowledge.
Setting a (F;) = —4.4 eV seems to be a good guess [22], implying dF;/dp =10 meV/GPa.
We thus show the temperature dependence of the gap at L in Fig. 5, assuming it to be
7.5 eV at 0 K. For this gap, the contribution of the DW term is dominant, similar to the
case of GaSb (see Fig. 10 of Ref. [48]).

The spectral functions for the '}y valence band (Fig. 2) and for the conduction band
at the point k= (0.75,0,0) x (27/a) (see Fig. 6) were used to calculate the temperature
dependence of the indirect gap F; of diamond (see Fig. 7). FE;(0 K)=5.41 eV has been
assumed. As in the previous figures, the solid line shows the total calculated shifts including
thermal expansion (dashed-dotted), self energy (dashed-double dotted) and Debye-Waller
term (not shown explicitly). It can be seen that the Debye-Waller term dominates the
shifts, in contrast to the results for the FE[ critical point (see Fig. 3). We also show the
experimental data of Clark et al. [45] (dashed line), which are in good agreement with our
calculated results.

B. Silicon

A comparison of the experimental and theoretical data for the temperature dependence
of the band gaps of silicon has been performed by Lautenschlager et al. [15,47]. New exper-
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imental data, however, have become available for the lowest indirect gap [49]. We therefore
show a comparison of these data and those of Thurmond [50] with our calculated results in
Fig. 8. We should point out that calculations also have been carried out by King-Smith et
al. [32]

We have also calculated the temperature dependence of the second lowest indirect gap
I'ye — Ly, see Fig. 9. Although silicon is the best studied semiconductor, the exact energy
of this transition is not well known. Forman et al. [51] report £ (I'ss — L1)=1.65 eV (which
is consistent with linear-muffin-tin-orbital calculations [22] of the position of the valence
band at L and the value of the E; gap in silicon [47]), but other groups have not been able
to reproduce these measurements. [52] Recent angle-resolved photoemission measurements
[53,54], another optical experiment [55], most ab initio pseudopotential band structure cal-
culations [56] (in conjunction with the ellipsometric result for E;) as well as quasi-particle
energy calculations [57,43] place this transition about 0.5 to 0.7 €V higher in energy.

C. Germanium

The temperature dependence of the lowest indirect (I'y5(v) — Li(c)) and various di-
rect gaps has been calculated in Refs. [14,15]. For completeness, we give in Fig. 10 the
temperature dependence of the indirect gap between I, (v) and X; (¢) which is important
for the transport properties of germanium. Based on photoemission data [44] we take this
transition to have an energy of 1.30 eV at 0 K, a value somewhat higher than that from the
quasiparticle band structure calculations [42,58], but in excellent agreement with the more
recent results of Hott [43]. The photoluminescence measurements of silicon-germanium al-
loys (extrapolated to pure germanium) by Weber and Alonso [49] suggest X{=0.93 eV.

IV. ISOTOPE SHIFTS

It can be seen that at a given temperature T' isotope effects enter in Eqs. (2) and (4)
through the mean-squared phonon amplitude

2
<ﬁ§jj> = SNy 142N, (T)| (7)
where M, is the mass of one atom of type « and NQj(T) the occupation number of the
phonon with wave vector (), branch j, and energy €15.. We neglect the small isotope
dependence of the matrix elements of Eq. (3). Therefore, Debye-Waller and self energy
terms not only cause temperature shifts, but also an isotope-dependent renormalization of
the electron energies at zero temperature. At 0 K (when N=0), we have

t
-2 ~1/2
(i) o M2, (8)
since the phonon frequencies are proportional to MY2,
We mention briefly that (in analogy to the thermal expansion contribution to the temper-
ature shifts) there is a third term in the isotope shifts not due to electron-phonon interaction.



[3,5,10] If the atoms in a crystal are replaced by heavier isotopes, the anharmonic contribu-
tion to the vibrational energy decreases. In order to compensate this decrease, the crystal
contracts thus minimizing the total free energy. Typical volume changes are about 0.1% for
carbon (between 2C and *C) and 107° for germanium (between °Ge and "®Ge) [3]. We
will not discuss these shifts here, as they are usually at least an order of magnitude smaller
than the isotopic shifts due to electron-phonon interaction. [5,10]

A. Diamond

Natural diamond has an atomic weight of 12.01 and consists of the isotope '*C with
traces of *C. Nevertheless, synthetic growth of crystals of 1*C, up to 3 mm in diameter, has
been reported in the literature [4,5]. From Table II it can be seen that the renormalization
of the gaps due to electron-phonon interaction is rather large (near 600 meV, except for
FE>(A)). The magnitudes of these corrections to the gaps are larger for the lighter isotope
1200, scaling approximately as Ma_l/z, as predicted by Eq. (8). Therefore, the measured gaps
are larger for 1?C than for 12C. We predict energy differences of 21.6, 5.1, and 20.4 meV for
the direct gaps Ej, F2 (A), and Ey (L), respectively. For the lowest indirect gap an isotope
shift of 144+0.7 meV was found by Collins and co-workers, [5] in rather good agreement with
our calculated result (17.1 meV). We stress that our formalism contains no free parameters
for the electron-phonon coupling. (The size of the plane-wave basis set in principle is a free
parameter, but its influence on the band structure as well as the temperature or isotope
shifts in most cases is smaller than 10% and therefore negligible.) The parameters for the
electronic band structure and the phonon frequencies and eigenvectors were taken from the
literature without adjustment. [39,27]

The Debye-Waller term gives the main contribution to the zero-point renormalizations,
whereas the self energy accounts only for about 20 to 40%, except for the Fy (A)-gap where it
gives the dominant contribution. The same statement holds, of course, for the contributions
to the isotopic differences.

It is also of interest to study the influence of the atomic mass on the temperature shifts
discussed earlier. If £T' is much larger than the phonon energies of a material, N becomes
independent of M and the shifts should not depend on the isotope. This approximation will
certainly not hold at moderate temperatures for diamond with its large phonon energies of
up to 165 meV. Therefore, a small isotope dependence of the temperature shifts is expected.
We find indeed that the indirect gap in natural diamond 2C shifts down by 11.0 meV from
0 K to 300 K and by 12.0 meV in ®C. Therefore, the isotopic effect on the indirect gap
should be smaller by 1 meV at room temperature than at 0 K. Similar results were obtained

for the direct gaps F| and FE; (L).

B. Germanium

Natural germanium contains five different isotopes (M = 70, 72, 73, 74, and 76) with
an average atomic mass of M=72.59. Nearly isotopically pure °Ge and ™Ge, as well as

crystals containing two isotopes with an average mass of M=75.69 have been grown by
different groups [2,8,10].



The zero-point renormalization energies for three crystals with M=70.00, 72.59, and
75.69 are given in Table III. We conclude that the indirect gap in natural germanium
should have an energy that is 1.3 meV lower than in a germanium crystal with M=75.69.
In a recent experiment, [10] this isotope shift has been measured to be 0.940.1 meV, in
reasonable agreement with our calculations. By the same token, we calculate an isotope
shift of 1.4 meV for the direct gap, whereas 1.2540.05 meV was found experimentally [10].

In contrast to diamond, self energy and Debye-Waller terms contribute almost equally
to the zero-point renormalization and isotope shifts. Therefore, the self energy terms have
to be included for a reasonable theoretical estimate of the changes in electronic energies
due to electron-phonon interactions. Just as for diamond, the isotopic shifts decrease with
increasing temperature.

V. EXPERIMENTS

In this section we discuss ellipsometric measurements of the £y and E; + A gaps of var-
ious isotopes of germanium. The data were obtained for three n-type crystals with isotopic
composition given in Table IV. Two of them (natural Ge and enriched ®Ge) were intrinsic
at room temperature (N; — N, ~ 10'* cm™, obtained from Hall measurements) and had
gone through a stringent purification procedure during growth. The third sample ("°Ge)
contained a larger concentration of donors and acceptors, with Ny — N, ~ 7 x 10 c¢m™3.
The electrical measurements were confirmed by far-infrared transmission. As shown by Vina
and Cardona [59], the free carrier concentration caused by the doping in these samples is
too small to have any measurable effect on the ellipsometric spectra.

A. Results

The spectroscopic ellipsometry measurements of the three Ge samples in Table IV were
performed at 10 K and at room temperature inside a cryostat with quartz windows nearly
free of birefringence. The reflecting surfaces were (111)-oriented and polished and etched
using the procedure described in Refs. [60,61] immediately before mounting them in the
cryostat. The data obtained were similar to those of Refs. [60,61] and are shown in Fig. 11.

By comparing our spectrum at 300 K (not shown in Fig. 11) with the data of Aspnes
and Studna [60] at the peak of ¢; at 4.35 €V, we find that our samples are covered with a
thin oxide layer of 0.9 nm thickness. After correcting our spectrum for such an overlayer
(dashed line) we obtain good agreement with the data of Ref. [60]. The dotted line shows
a spectrum taken at 10 K (uncorrected), the solid line the same spectrum after correction
for 0.9 nm of GeO; oxide. On this scale, no differences can be found between the different
1sotopes.

In order to precisely determine the energies of the F; and F; + A; critical points, we
calculated numerically the third derivative of our spectra and performed a line shape analysis
as described in detail in Ref. [48]. Two-dimensional critical points were used to describe the
observed line shape. The best fits to the spectra taken for the three samples are shown in
Fig. 12. It can be seen that there is indeed a small shift (of the same order as our error bars



obtained from measuring the same sample several times), with the heaviest isotope having
the highest energy.

B. Discussion

The energies of the critical points £y and F; + Ay and their Lorentzian widths were
obtained from the fits to the derivative spectra shown in Fig. 12. They are listed in Table
V. The mass dependence of the [’s can easily be estimated from the measured temperature
dependence of I'. Such an estimate is more difficult for the isotopic shift of £y and £y + A;.
The reason is that the observed widths I" are actually due fully to electron-phonon interaction
while the contribution of this interaction to £y and E; + Ay cannot be directly inferred from
experiment. It must be estimated through a fit of the measured temperature dependence of
Fy and E; + Ay and is thus strongly affected by the functions taken for the fit [47]. From
(7) and the widths of Table V we obtain directly the isotopic shifts in I' with respect to
those of the natural material given in Table V. We recall that the measured values of I" agree
reasonably well with those calculated from the “Fan terms” using a realistic pseudopotential
band structure and a lattice dynamics based on the bond charge model [15].

The interpretation of the measured 6 F; and §(F; + A;) must be made by comparison
with the calculated values at T'= 0 due to the zero point vibrational amplitudes [15]. We
find §Fy ~ §(F1 + Ay)=58 meV averaged over the (111) points at which the Fy and Fy + Ay
transitions occur (no spin-orbit splitting was included in these calculations, a fact which we
now know does not significantly alter the values of £ [15]). From this value of the zero
point vibrational effect on the gap energy and Eq. (8) we find those of §E; ~ §(F; + Aq)
listed in Table V.

It is strikingly apparent in Table V that while the measured values of 6 £y and 6( £y + Aq)
for Ge agree, within the admittedly large error bars, with the calculated ones, those for
(e are considerably larger (~ a factor of 4) although they have the correct sign predicted
by the isotopic shift theory. Since this sign is that which corresponds to increasing thermal
agitation, i.e., disorder (the "°Ge atoms vibrate with larger amplitude than the natural mate-
rial “>5Ge) we conjecture that our *Ge material contains a larger concentration of impurities
than the other two samples known to have Np ~ 10 cm™!. The "“Ge had not gone through
the stringent purification process to which the other two samples had been subjected. We
actually know that for our °Ge Np — N4 ~ 7 x 10'® cm™3. In the absence of compensation
(i.e. Na < Np) the corresponding donor concentration would have an unobservable effect
on the F; and F; + A energies (S 0.5 meV) and the corresponding broadenings I' = —¥;
(< 0.5 meV) [59]. We conclude that this sample must be strongly compensated (a con-
clusion supported by IR-transmission data), with Np ~ Ny =5 x 1017 em™ [59]. We note
the possibility of using disorder-induced critical point shifts for an estimate of the degree of
compensation in samples for which Np and N4 are not separately known.

VI. CONCLUSIONS

We have calculated the temperature dependence of the energy and Lorentzian widths of
electronic states at several high symmetry points of the Brillouin zone for diamond, silicon,
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and germanium. We have shown that the effects of the zero point vibrations (7' = 0) are
by no means negligible and result in the dependence of the gaps on isotopic mass at low
temperature. This effect should be important when comparing gaps theoretically calculated
for a static lattice with the measured ones, in view of the increasing reliability and accuracy
of such calculations. [43,42] The calculated temperature shifts of several gaps have been
found to account well for the experimental results. Also, recently measured effects of the
isotopic mass on several gaps of diamond and germanium have been shown to agree with
our theoretical predictions.
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TABLES

TABLE I. Parameters needed for the evaluation of the thermal expansion contribution to the
temperature shifts of band gaps (from Ref. [19], unless otherwise indicated).

Material gap (OF /0p)T B a (300 K)
(meV/GPa) (GPa) (1076 K1)

Diamond E} 7.0 [20] 442 1.0
E; 6.4 [21]
By 10

Si E; —14.1 98 2.56
r—1r 44 [22]

Ge r—Xx 14 [23] 75. 5.90

TABLE II. Renormalization of electronic states and band gaps due to the zero-point vibra-
tion of the phonons for two different isotopes of diamond (in meV, relative to the valence band

maximum).

state mass SE DW total
I'e (v) 12.00 0.0 0.0 0.0
I'15(c) 12.00 —547.8 —130.1 —677.9
As(v) 12.00 —401.2 —46.9 —448.1
Aq(c) 12.00 —441.5 —177.4 —619.0
Li(v) 12.00 —43.1 —11.6 —54.7
Li(c) 12.00 —409.5 —253.6 —663.1
Ej 12.00 —547.8 —130.1 —677.9
Fina 12.00 —441.5 —177.4 —619.0
FEy(A) 12.00 —40.3 —130.5 —170.9
Fq(L) 12.00 —366.4 —242.0 —608.4
I'e (v) 13.00 0.0 0.0 0.0
I'15(c) 13.00 —531.3 —125.2 —656.3
As(v) 13.00 —391.0 —45.2 —436.1
Aq(c) 13.00 —431.1 —170.8 —601.9
L% (v) 13.00 —44.9 —11.2 —56.0
Li(c) 13.00 —399.9 —244.1 —644.0
E} 13.00 —531.3 —125.2 —656.3
Fiha 13.00 —431.1 —170.8 —601.9
FEy(A) 13.00 —40.1 —125.6 —165.8
Fq(L) 13.00 —355.1 —232.9 —588.0
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TABLE III. As Table II, but for three germanium crystals with different atomic masses.

state mass SE DW total
I'e (v) 70.00 0.0 0.0 0.0
I'z(c) 70.00 —27.50 —34.92 —62.42
LL(v) 70.00 —4.08 —4.91 —8.99
Li(c) 70.00 —22.80 —34.66 —57.46
X4(v) 70.00 —22.74 —11.38 —34.12
X1(c) 70.00 —23.35 —37.30 —60.65
Ey 70.00 —27.50 —34.92 —62.42
Ery 70.00 —22.80 —34.66 —57.46
Fq(L) 70.00 —18.72 —29.75 —48.47
Fy(X) 70.00 —0.61 —25.92 —26.53
I'e (v) 72.59 0.0 0.0 0.0
I'z(c) 72.59 —27.18 —34.33 —61.51
LL(v) 72.59 —4.02 —4.82 —8.84
Li(c) 72.59 —22.55 —34.07 —56.62
X4(v) 72.59 —22.48 —11.19 —33.67
X1(c) 72.59 —23.10 —36.67 —59.77
Ey 72.59 —27.18 —34.33 —61.51
Ery, 72.59 —22.55 —34.07 —56.62
Fq(L) 72.59 —18.53 —29.25 —47.78
Fy(X) 72.59 —0.62 —25.48 —26.10
I'e (v) 75.69 0.0 0.0 0.0
I'z(c) 75.69 —26.54 —33.54 —60.08
Li(v) 75.69 —4.00 —4.72 —8.72
Li(c) 75.69 —22.05 —33.29 —55.34
X4(v) 75.69 —21.93 —10.94 —32.87
X1(c) 75.69 —22.56 —35.83 —58.39
Ey 75.69 —26.54 —33.54 —60.08
Ery 75.69 —22.05 —33.29 —55.34
Fq(L) 75.69 —18.05 —28.57 —46.62
Fy(X) 75.69 —0.63 —24.89 —25.52

TABLE IV. Isotopic composition of enriched °Ge, "®Ge, and natural Ge used in the ellipso-
metric experiments. ¢ represents the mean square mass fluctuation defined in Ref. [11].

Atomic percent of
the various isotopes

M 70 72 73 74 76 g (107%)
0Ge 95.9 3.8 2.976
2.6Ge 20.5 27.4 7.8 36.5 7.1 58.745
56Ge 0.1 0.23 13.7 86.0 8.797
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TABLE V. Energies and Lorentzian widths (HWHM) of the Fy and Ey 4+ Ay critical points of
two isotopically enriched Ge samples (see Table 1V) and a natural one. The corresponding changes

in self energy §F, 8" are referred to the natural sample.

M B B4+ A Te, Tgta, §Ey ST (Fr) §(E1 + Ay) ST(Fr + Ay)
(meV) (meV) (meV) (meV) (meV) (meV) (meV) (meV)

70 2237.8(6) 2435.4(4) 35.1(3) 38.0(3) —4.4(18)* -1¥ 2.1(4)* 05°  —4.9(12)* -1* 1.9(8)¢ 0.6°

72.6  2242.2(17) 2440.3(12) 33.0(3) 36.1(7) 0 0 0 0

75.6  2243.3(5)  2441.3(4) 32.6(2) 35.5(5) 1.1(18)¢ 1.35% -0.4(4)* -0.8° 1.0(12)* 1.35* -0.6(9)* -0.8°

%experimental

bcalculated
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FIGURES

FIG. 1. Feynman diagrams for the renormalization of band gaps due to deformation poten-
tial-type electron-phonon interaction: (a) Debye-Waller-term, (b) self energy or Fan-term.

FIG. 2. Dimensionless electron-phonon spectral function g?F for the shifts of the F} gap in
natural diamond '2C due to electron-phonon interaction as a function of phonon energy €. The De-
bye-Waller term (dashed) is slightly larger for the valence band than for the conduction band. The
optical phonon peak of the self energy spectral function (solid line) is negative for the conduction
band and positive for the valence band.

FIG. 3. Shifts of the Ej gap in natural diamond '2C (solid line) including thermal expan-
sion (dashed-dotted), self-energy (dashed-double-dotted) and Debye-Waller term (not shown sep-
arately). F{(0 K)=7.30 eV has been assumed.

FIG. 4. As Fig. 2, but for the gap at L in diamond '2C. The magnitude of the DW and SE
terms is larger for the valence bands than for the conduction bands.

FIG. 5. As Fig. 3, but for the gap at L in diamond 2C. E7(0 K)=7.50 eV has been assumed.

FIG. 6. As Fig. 2, but for the point k= (0.75,0,0) (27 /a) in diamond 12C. The magnitude of
DW and SE terms is larger for the valence band than for the conduction band.

FIG. 7. As Fig. 3, but for the lowest indirect gap in diamond '2C. F;(0 K)=>5.41 eV has been
assumed. The dashed line shows the experimental data of Ref. [45].

FIG. 8. As Fig. 3, but for the lowest indirect gap in silicon. F;(0 K)=1.17 eV has been assumed.
The dashed lines show the experimental data of Ref. [50] (up to 400 K) and of Ref. [49] (up to 800

FIG. 9. As Fig. 3, but for the second indirect gap I'y; (v) — Ly (¢) in silicon.

FIG. 10. As Fig. 3, but for the second indirect gap ['}s (v) — X; (¢) in germanium.

FIG. 11. Dielectric function of natural Ge at 300 K as obtained by Aspnes and Studna [60]
(symbols) and in this work after a correction for an oxide layer of 0.9 nm thickness (dashed).
The dotted line shows an uncorrected spectrum at 10 K, the solid line the same spectrum after a
correction for 0.9 nm oxide. Isotopic differences between the three samples (see Table 1V) are not
visible on this scale.
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FIG. 12. Fits to the third derivative spectra of the real (¢, solid line) and imaginary (3, dotted)
parts of the dielectric function of three germanium samples with different isotopic compositions
(indicated by the arrows) around the ) critical point taken at 10 K. The vertical arrows show the
positions of the critical point energies as determined from a line shape analysis. The spectra have
been multiplied with factors close to unity (0.8 ...1.2) so to exhibit the same amplitude.
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